Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Michael B. Doran, ${ }^{\text {a }}$ Alexander J. Norquist ${ }^{\text {b }}$ and Dermot $\mathrm{O}^{\prime} \mathrm{Hare}^{\mathrm{a} *}$
${ }^{\text {a }}$ Inorganic Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QR, England, and ${ }^{\mathbf{b}}$ Department of Chemistry, Haverford College, Haverford, PA 19041, USA

Correspondence e-mail:
dermot.ohare@chem.ox.ac.uk

Key indicators

Single-crystal X-ray study
$T=150 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.010 \AA$
R factor $=0.023$
$w R$ factor $=0.053$
Data-to-parameter ratio $=12.2$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2003 International Union of Crystallography Printed in Great Britain - all rights reserved

Poly[[1,4-bis-(3-aminopropyl)piperazinium] [[dioxouranium(VI)]-di- μ_{2}, μ_{3}-sulfato]]

The title compound, $\left\{\left(\mathrm{C}_{10} \mathrm{H}_{28} \mathrm{~N}_{4}\right)\left[\left(\mathrm{UO}_{2}\right)_{2}\left(\mathrm{SO}_{4}\right)_{4}\right]\right\}_{n}$, contains two-dimensional $\left[\left(\mathrm{UO}_{2}\right)_{2}\left(\mathrm{SO}_{4}\right)_{4}\right]^{4-}$ layers with 1,4-bis-(3aminopropyl)piperazinium cations balancing the charge. Each U^{VI} cation is seven-coordinate in a pentagonal bipyramidal geometry, and each sulfate tetrahedron bridges beween two adjacent uranium centres to form layers.

Comment

The chemistry of open-framework metal phosphates is well known (Cheetham et al., 1999). Despite the depth of this investigation, little effort has been expended upon the analogous sulfate systems. Reports of organically templated metal sulfates have only appeared in the literature in the last two years. Compounds incorporating Sc (Bull et al., 2002), V (Paul, Choudhury, Nagarajan \& Rao, 2003; Khan et al., 1999), Cd (Paul et al., 2002b; Choudhury et al., 2001), Fe (Paul et al., 2002, 2002a; Paul, Choudhury \& Rao, 2003), Ce (Wang et al., 2002), La (Bataille \& Louer, 2002; Xing et al., 2003) and U (Doran et al., 2002, 2003a; Norquist et al., 2002, 2003; Stuart et al., 2003; Thomas et al., 2003) are known. These compounds exhibit great structural diversity, with structures ranging from molecular anions to three-dimensional microporous materials. Here, we report the synthesis and structure of an organically templated uranium(VI) sulfate, $\left[\mathrm{C}_{10} \mathrm{H}_{28} \mathrm{~N}_{4}\right]\left[\left(\mathrm{UO}_{2}\right)_{2}\left(\mathrm{SO}_{4}\right)_{4}\right]$, which is denoted USO-24 (uranium sulfate from Oxford). A displacement ellipsoid plot of USO-24 is shown in Fig. 1.

One unique uranium centre is present in USO-24. Atom U1 is seven-coordinate in a pentagonal bipyramidal geometry. Two short 'uranyl' bonds to axial oxides are observed. The $\mathrm{U} 1-\mathrm{O} 1$ and $\mathrm{U} 1-\mathrm{O} 2$ bonds have lengths of 1.778 (4) and 1.764 (4) Å, respectively. These values are close to the average reported value of 1.758 (3) \AA (Burns et al., 1997) and the O1$\mathrm{U} 1-\mathrm{O} 2$ angle is close to 180° with a value of $178.93(18)^{\circ}$. All five equatorial coordination sites around U1 are occupied by oxide ligands that bridge to adjacent sulfur centres, with distances ranging between 2.332 (4) and 2.456 (4) \AA. Two

Received 27 June 2003
Accepted 4 August 2003
Online 23 August 2003

Figure 1
Displacement ellipsoid plot of the title compound, with the atomic numbering scheme. Ellipsoids are drawn at the 50% probability level. Atom O4\# is at the symmetry position $\left(x-\frac{1}{2}, \frac{1}{2}-y, 1-z\right)$ and O7\# is at $\left(\frac{1}{2}+x, y, \frac{1}{2}-z\right)$.

Figure 2
Layers in USO-24. Green pentagonal bipyramids and blue tetrahedra represent $\left[\mathrm{UO}_{7}\right]$ and $\left[\mathrm{SO}_{4}\right]$, respectively.
distinct sulfur sites are observed in USO-24. Both S1 and S2 are at the centre of $\left[\mathrm{SO}_{4}\right]$ tetrahedra. Atom S 1 is bound to two O atoms that bridge to adjacent uranium centres and two terminal O atoms. $\mathrm{S} 1-\mathrm{O}_{\text {bridging }}$ distances are 1.492 (4) and 1.502 (4) \AA, and $\mathrm{S} 1-\mathrm{O}_{\text {terminal }}$ distances are 1.447 (5) and 1.465 (5) \AA. Atom S 2 is bound to three O atoms that bridge to uranium centres and one terminal O atom. Atoms O 5 and O6 bridge the same $\left[\mathrm{UO}_{2}\right]^{2+}$ cation, resulting in a shared edge between the U 1 and S 1 polyhedra. These $\mathrm{S}-\mathrm{O}$ bridging

Figure 3
The three-dimensional packing of USO-24. Green pentagonal bipyramids and blue tetrahedra represent $\left[\mathrm{UO}_{7}\right]$ and $\left[\mathrm{SO}_{4}\right]$, respectively.
distances are 1.494 (4) and 1.497 (4) \AA. The $\mathrm{S} 2-\mathrm{O}_{\text {terminal }}$ distance is 1.437 (5) \AA.

Layers are formed because each uranium centre is connected to four others through four bridging sulfate tetrahedra (see Fig. 2). This layer structure is known in uranium chemistry (Doran et al., 2003b). These layers lie in the (101) plane and are separated by the template cations (See Fig. 3). The template cation is involved in hydrogen bonding with the layer (Table 2).

Experimental

$0.2585 \mathrm{~g}\left(6.10 \times 10^{-4} \mathrm{~mol}\right)$ of $\mathrm{UO}_{2}\left(\mathrm{CH}_{3} \mathrm{CO}_{2}\right)_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}, 0.4048 \mathrm{~g}(4.13 \times$ $\left.10^{-3} \mathrm{~mol}\right)$ of $\mathrm{H}_{2} \mathrm{SO}_{4}, 0.1234 \mathrm{~g}\left(6.17 \times 10^{-4} \mathrm{~mol}\right)$ of 1,4 -bis $(3-\mathrm{amino}-$ propyl)piperazine and $1.0168 \mathrm{~g}\left(5.65 \times 10^{-2} \mathrm{~mol}\right)$ of water were placed into a 23 ml Teflon-lined autoclave. The autoclave was heated to 453 K for 24 h , at which point it was cooled slowly to 297 K over an additional 24 h . The autoclave was opened in air and the products recovered by filtration.

Crystal data

$\left(\mathrm{C}_{10} \mathrm{H}_{28} \mathrm{~N}_{4}\right)\left[\left(\mathrm{UO}_{2}\right)_{2}\left(\mathrm{SO}_{4}\right)_{4}\right]$
$M_{r}=1128.66$
Orthorhombic, Pbca
$a=9.5831$ (2) \AA 。
$b=15.6060(3) \AA$
$c=18.1212(3) \AA$
$V=2710.10(9) \AA^{3}$
$Z=4$
$D_{x}=2.766 \mathrm{Mg} \mathrm{m}^{-3}$

Data collection

Enraf-Nonius KappaCCD
diffractometer
ω scans
Absorption correction: multi-scan
(Otwinowski \& Minor, 1997)
$T_{\text {min }}=0.11, T_{\text {max }}=0.14$
6194 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>3 \sigma\left(F^{2}\right)\right]=0.023$
$w R\left(F^{2}\right)=0.053$
$S=0.89$
2219 reflections
182 parameters
H -atom parameters not refined Weighting scheme: Chebychev polynomial with 5 parameters

Mo $K \alpha$ radiation
Cell parameters from 3482 reflections
$\theta=5-27^{\circ}$
$\mu=12.34 \mathrm{~mm}^{-1}$
$T=150 \mathrm{~K}$
Block, yellow
$0.20 \times 0.16 \times 0.16 \mathrm{~mm}$

3091 independent reflections 2219 reflections with $I>3 \sigma(I)$
$R_{\text {int }}=0.02$
$\theta_{\text {max }}=27.5^{\circ}$
$h=-12 \rightarrow 12$
$k=-20 \rightarrow 20$
$l=-23 \rightarrow 23$
(Carruthers \& Watkin, 1979):
7.01, 10.1, 6.10, 2.43 and 1.09
$(\Delta / \sigma)_{\max }=0.001$
$\Delta \rho_{\text {max }}=2.10 \mathrm{e}^{\circ} \AA^{-3}$
$\Delta \rho_{\min }=-0.93 \mathrm{e} \mathrm{A}^{-3}$
Extinction correction: Larson (1970), Crystallographic

Computing eq 22
Extinction coefficient: 29.4 (27)

Table 1
Selected geometric parameters ($\AA{ }^{\circ}{ }^{\circ}$).

U1-O1	1.778 (4)	S2-O5	1.497 (4)
U1-O2	1.764 (4)	S2-O6	1.494 (4)
U1-O3	2.348 (4)	S2-O7	1.489 (4)
$\mathrm{U} 1-\mathrm{O} 4^{\mathrm{i}}$	2.332 (4)	S2-O10	1.437 (5)
U1-O5	2.455 (4)	N1-C1	1.500 (7)
U1-O6	2.456 (4)	N1-C2	1.503 (8)
$\mathrm{U} 1-\mathrm{O} 7^{\text {ii }}$	2.378 (4)	N1-C3	1.504 (8)
S1-O3	1.502 (4)	N2-C5	1.458 (9)
S1-O4	1.492 (4)	$\mathrm{C} 1-\mathrm{C}^{\text {iii }}$	1.516 (9)
S1-O8	1.447 (5)	C4-C3	1.506 (9)
S1-O9	1.465 (5)	C4-C5	1.52 (1)
$\mathrm{O} 1-\mathrm{U} 1-\mathrm{O} 2$	178.93 (18)	O3-S1-O9	109.5 (3)
$\mathrm{O} 1-\mathrm{U} 1-\mathrm{O} 3$	89.54 (18)	O4-S1-O8	111.2 (3)
$\mathrm{O} 1-\mathrm{U} 1-\mathrm{O}^{\mathrm{i}}$	88.82 (17)	O4-S1-O9	108.3 (3)
O1-U1-O5	91.55 (17)	O8-S1-O9	111.4 (3)
O1-U1-O6	89.51 (18)	O5-S2-O6	103.7 (2)
$\mathrm{O} 1-\mathrm{U} 1-\mathrm{O} 7^{\mathrm{ii}}$	84.40 (17)	O5-S2-O7	107.5 (3)
$\mathrm{O} 2-\mathrm{U} 1-\mathrm{O} 3$	90.07 (18)	O5-S2-O10	112.3 (3)
$\mathrm{O} 2-\mathrm{U} 1-\mathrm{O}^{\mathrm{i}}$	90.13 (17)	O6-S2-O7	108.2 (3)
$\mathrm{O} 2-\mathrm{U} 1-\mathrm{O} 5$	88.36 (17)	O6-S2-O10	113.0 (3)
O2-U1-O6	91.34 (18)	O7-S2-O10	111.6 (3)
$\mathrm{O} 2-\mathrm{U} 1-\mathrm{O} 7{ }^{\text {ii }}$	96.49 (17)	U1-O3-S1	136.0 (3)
$\mathrm{O} 3-\mathrm{U} 1-\mathrm{O} 4^{\mathrm{i}}$	80.39 (15)	$\mathrm{U} 1^{\text {iv }}-\mathrm{O} 4-\mathrm{S} 1$	141.7 (3)
O3-U1-O5	154.13 (15)	U1-O5-S2	99.5 (2)
O3-U1-O6	148.60 (14)	U1-O6-S2	99.5 (2)
$\mathrm{O} 3-\mathrm{U} 1-\mathrm{O} 7{ }^{\text {ii }}$	77.92 (15)	$\mathrm{U} 1{ }^{\mathrm{v}}-\mathrm{O} 7-\mathrm{S} 2$	135.2 (3)
$\mathrm{O} 4^{\mathrm{i}}-\mathrm{U} 1-\mathrm{O} 5$	73.79 (14)	$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 2$	109.4 (5)
$\mathrm{O} 4^{\mathrm{i}}-\mathrm{U} 1-\mathrm{O} 6$	130.96 (14)	$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 3$	109.2 (5)
$\mathrm{O} 4^{\mathrm{i}}-\mathrm{U} 1-\mathrm{O} 7^{\text {ii }}$	157.30 (15)	$\mathrm{C} 2-\mathrm{N} 1-\mathrm{C} 3$	113.5 (5)
O5-U1-O6	57.26 (13)	$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2{ }^{\text {iii }}$	112.0 (5)
$\mathrm{O} 5-\mathrm{U} 1-\mathrm{O} 7{ }^{\text {ii }}$	127.90 (14)	$\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 1{ }^{\text {iii }}$	110.8 (5)
$\mathrm{O} 6-\mathrm{U} 1-\mathrm{O} 7^{\mathrm{ii}}$	70.76 (14)	N1-C3-C4	114.7 (5)
O3-S1-O4	104.8 (3)	C3-C4-C5	108.2 (6)
O3-S1-O8	111.4 (3)	$\mathrm{N} 2-\mathrm{C} 5-\mathrm{C} 4$	112.7 (7)

Symmetry codes: (i) $x-\frac{1}{2}, \frac{1}{2}-y, 1-z$; (ii) $\frac{1}{2}+x, y, \frac{1}{2}-z$; (iii) $-x,-y,-z$; (iv) $\frac{1}{2}+x, \frac{1}{2}-y, 1-z$; (v) $x-\frac{1}{2}, y, \frac{1}{2}-z$.

Table 2
Hydrogen-bonding geometry ($\AA^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 \cdots \mathrm{O}^{\text {i }}$	1.00	1.80	$2.763(7)$	161
$\mathrm{~N} 2-\mathrm{H} 12 \cdots \mathrm{O}^{\mathrm{ii}}$	1.00	2.05	$3.033(7)$	168
$\mathrm{~N} 2-\mathrm{H} 13 \cdots \mathrm{O}^{\text {iii }}$	1.00	1.94	$2.894(8)$	158
$\mathrm{~N} 2-\mathrm{H} 14 \cdots \mathrm{O}^{\text {iv }}$	1.00	2.21	$3.200(7)$	171

Symmetry codes: (i) $1-x, y-\frac{1}{2}, \frac{1}{2}-z$; (ii) $x-\frac{1}{2}, y, \frac{1}{2}-z$; (iii) $x, \frac{1}{2}-y, z-\frac{1}{2}$; (iv) $\frac{1}{2}+x, y, \frac{1}{2}-z$.

H atoms were placed geometrically, with $\mathrm{C}-\mathrm{H}$ and $\mathrm{N}-\mathrm{H}$ distances fixed at $1.00 \AA$, and were unrefined. The highest peak in the difference map was located $1.89 \AA$ from H11. Refinement treating this as a solvent water O atom resulted in a partial occupancy of 0.28 (1). Although the inclusion of this atom improves the various agreement analyses, it was not included in the final refinement as it is not chemically significant.

Data collection: COLLECT (Nonius, 1997); cell refinement: DENZO/SCALEPACK (Otwinowski \& Minor, 1997); data reduction: $D E N Z O / S C A L E P A C K$; program(s) used to solve structure: SHELXS86 (Sheldrick, 1985); program(s) used to refine structure: CRYSTALS (Watkin et al., 2001); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: CRYSTALS.

The authors thank the EPSRC for support.

References

Bataille, T. \& Louer, D. (2002). J. Mater. Chem. 12, 3487-3493.
Bull, I., Wheatley, P. S., Lightfoot, P., Morris, R. E., Sastre, E. \& Wright, P. A. (2002). Chem. Commun. pp. 1180-1181.

Burns, P. C., Ewing, R. C. \& Hawthorne, F. C. (1997). Can. Mineral. 35, 15511570.

Carruthers, J. R. \& Watkin, D. J. (1979). Acta Cryst. A35, 698-699.
Cheetham, A. K., Ferey, G. \& Loiseau, T. (1999). Angew. Chem. Int. Ed. Engl. 38, 3269-3292.
Choudhury, A., Krishnamoorthy, J. \& Rao, C. N. R. (2001). Chem. Commun. pp. 2610-2611.
Doran, M. B., Norquist, A. J. \& O'Hare, D. (2002). Chem. Commun. pp. 29462947.

Doran, M. B., Norquist, A. J. \& O'Hare, D. (2003a). Acta Cryst. E59, m373m375.
Doran, M. B., Norquist, A. J. \& O'Hare, D. (2003b). Chem. Mater. 15, 14491455.

Khan, M. I., Cevik, S. \& Doedens, R. J. (1999). Inorg. Chim. Acta, 292, 112116.

Larson, A. C. (1970). Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall \& C. P. Huber, pp.291-294. Copenhagen: Munksgaard.
Nonius (1997). COLLECT. Nonius BV, Delft, The Netherlands.
Norquist, A. J., Doran, M. B., Thomas, P. M. \& O'Hare, D. (2003). J. Chem. Soc. Dalton Trans. pp. 1168-1175.
Norquist, A. J., Thomas, P. M., Doran, M. B. \& O'Hare, D. (2002). Chem. Mater. 14, 5179-5184.
Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr and R. M. Sweet, pp. 307-326. New York: Academic Press.

Paul, G., Choudhury, A., Nagarajan, R. \& Rao, C. N. R. (2003). Inorg. Chem. 42, 2004-2013.
Paul, G., Choudhury, A. \& Rao, C. N. R. (2002a). Chem. Commun. pp. 19041905.

Paul, G., Choudhury, A. \& Rao, C. N. R. (2002b). J. Chem. Soc. Dalton Trans. pp. 3859-3867.
Paul, G., Choudhury, A. \& Rao, C. N. R. (2003). Chem. Mater. 15, 1174-1180.
Paul, G., Choudhury, A., Sampathkumaran, E. V. \& Rao, C. N. R. (2002). Angew. Chem. Int. Ed. Engl. 41, 4297-4300.
Sheldrick, G. M. (1985). SHELXS86. University of Göttingen, Germany.
Stuart, C. L., Doran, M. B., Norquist, A. J. \& O'Hare, D. (2003). Acta Cryst. E59, m446-m448.
Thomas, P. M., Norquist, A. J., Doran, M. B. \& O'Hare, D. (2003). J. Mater. Chem. 13, 88-92.
Wang, D., Yu, R., Xu, Y., Feng, S., Xu, R., Kumada, N., Kinomura, N., Matumura, Y. \& Takano, M. (2002). Chem. Lett. pp. 1120-1121.
Watkin, D. J., Prout, C. K., Carruthers, J. R., Betteridge, P. W. \& Cooper, R. I. (2001). CRYSTALS. Issue 11. Chemical Crystallography Laboratory, Oxford, England.
Watkin, D. J., Prout, C. K. \& Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England.
Xing, Y., Shi, Z., Li, G. \& Pang, W. (2003). J. Chem. Soc. Dalton Trans. pp. 940943.

